

Instruction and operation manual

S435

Vortex Flow Meter for Steam (Inline)

Dear Customer,

Thank you for choosing our product.

Please read this manual in full before you start up the device and carefully observe instructions stated in this manual. The manufacturer cannot be held liable for any damage that occurs as a result of non-observance or non-compliance with this manual.

Should the device be tampered with in any manner other than a procedure that is described and specified in the manual, the warranty is void and the manufacturer is exempt from liability.

The device is designed exclusively for the described application.

SUTO offers no guarantee for the suitability for any other purpose. SUTO is also not liable for consequential damage resulting from the delivery, capability or use of this device.

2 \$435

Table of Contents

1	Safety Instructions	5
2	Registered Trademarks	7
3	Application	8
4	Technical Data	8
	4.1 General	8
	4.2 Electrical Data General	8
5	Dimensional Drawing	9
6	Installation	10
	6.1 Installation Requirements	.10
	6.2 Installation Instructions	
	6.2.1 Error between the Inner Diameters of Pipes	.12
	6.2.2 Straight Pipe Requirements	.12
	6.2.3 Wafer Type of Vortex Flow Meter Installation	.14
	6.2.4 Flange and Bolt	.15
	6.3 Electrical Connection	. 15
	6.3.1 Requirements on Cable	.15
	6.3.2 Terminal Connection	.16
	6.4 Power Supply Connection	.17
	6.5 Frequency Output	. 17
	6.6 RS-485 Communication	.18
7	Parameter Setting	
	7.1 Keypad and Display	
	7.2 Parameter Setting Function and Operation	.21
	7.3 Operation Menu	
	7.4 Quick Setup Menu List	.22
	7.5 Parameter Settings Instruction	
	7.5.1 Nominal Size	.23
	7.5.2 Flow Unit	.23
	7.5.3 LowFlow Cutoff	
	7.5.4 Flow Range	.23
	7.5.5 Language	
	7.5.6 Output Mode	
	7.5.7 Output Freq	
	7.5.8 CommAddress	
	7.5.9 Band Rate	
	7.5.10 CompensMode	
	7.5.11 CompSetTemp	
	7.5.12 CompSetPress	
	7.5.13 RTD Sel	
	7.5.14 PressMax	
	7.5.15 VoltageMin/ VoltageMax/ Sensor Type	.25

SU (

7.5.16 AtmSet	25
7.5.17 Press Unit	
7.5.18 Press Cut Off	25
7.6 Instrument On-site Debugging	26
7.7 Total Reset	26
7.8 Communication Mode Selection	26
7.9 Temperature and Pressure Compensation Function	26
8 Troubleshooting	28
9 Disposal or Waste	29
10 Appendix A: Flow Measurement Range	30
11 Appendix B: Modbus Communications	31
11.1 Introduction	31
11.2 Modbus Networking and Wiring	31
11.3 Modbus Messages in RTU Framing	
11.3.1 Master Order Frame Structure	
11.3.2 Slave response frame structure	
11.4 Function Codes	
11.5 Definition of addresses	
11.6 Modbus Registers	
11.6.1 S435 Data Type	
11.6.2 Modbus Register Addresses	
11.6.3 Description of Data	
11.7 Communication Data Analysis	
11.7.1 Read Instantaneous Flow	
11.7.2 Read Cumulative Flow	38

1 Safety Instructions

Please check if this instruction manual matches with the product type.

Please observe all notes and instructions indicated in this manual. This manual contains essential information that must be observed before and during installation, operation and

maintenance. Therefore this manual must be read carefully by the technician as well as by the responsible user or qualified personnel.

This instruction manual must be available at the operation site of the product at any time. In case of any obscurities or questions regarding this manual or the product, please contact the manufacturer.

WARNING!

Compressed air!

Any contact with quickly escaping air or bursting parts of the compressed air system can lead to serious injuries or even death!

- Do not exceed the maximum permitted pressure range (see sensors label).
- Use only pressure-tight installation material.
- Prevent persons from being hit by escaping air or bursting parts of the instrument.
- The system must be pressureless during maintenance work.

WARNING!

Voltage used for supply!

Any contact with energized parts of the device may lead to an electrical shock which can lead to serious injuries or even death!

- Consider all regulations for electrical installations.
- The system must be disconnected from any power supply during maintenance.
- Any electrical work on system is allowed only by authorized qualified personal.

ATTENTION!

Permitted operating parameters!

Observe the permitted operating parameters. Any operation beyond these parameters can lead to malfunctions and may lead to damage on the product or the system.

- Do not exceed the permitted operating parameters.
- Make sure that the product is operated under its permitted conditions.
- Store and operate the product at the permitted temperature and pressure.
- The product should be maintained and calibrated frequently, at least annually.

General safety instructions

- It is not allowed to use the product in explosive areas.
- Please observe the national regulations before and during installation and operation.

Notes

- It is not allowed to disassemble the product.
- Always use spanners to mount the product properly.

ATTENTION!

Measurement values can be affected by malfunction! The product must be installed properly and maintained frequently. Otherwise it may lead to wrong measurement values, which can lead to wrong results.

- Always observe the direction of the flow when installing the device. The direction is indicated on the housing.
- Do not exceed the maximum operation temperature at the sensors tip.
- Avoid condensation on the sensor element because it will affect accuracy enormously.

Storage and transportation

- It is recommended to use the packaging that comes with the product for storage and transportation.
- Make sure that the storage temperature is between -10°C ... +65°C. The ideal temperature and humidity range is 25°C and 65%.
- Avoid direct UV and solar radiation during storage.
- The storage humidity must be between 5% ... 90% with no condensation.

2 Registered Trademarks

SUTO[®] Registered trademark of SUTO iTEC

MODBUS[®] Registered trademark of the Modbus Organization,

Hopkinton, USA

HART[®] Registered trademark of the HART Communication

Foundation, Austin, USA

Android™, Google Play Trademarks of Google LLC

3 Application

The S435 Vortex Flow Meter for Steam operates based on the Karman Vortices principle, and is used to measure flow rates in saturated steam applications.

4 Technical Data

4.1 General

Measured fluid	Steam Gas
Nominal diameter (mm)	DN40 DN300 wafer type
Medium temperature	-40°C +250°C
Ambient temperature	-10°C +60°C
Accuracy	±1.5% of reading
Repeatability	0.5%
Display	Instant flow rate / Total flow rate / Frequency / Percentage of flow range
Signal output	Pulse output / Modbus
Protection level	IP65
Electrical connection	1/2" -14NPT
Installing type	Wafer type
Wetted parts material	304 stainless steel
Process control material	Carbon steel /304/316/316L (Flange/Wafer)
Detector probe	316 Stainless steel
Connecting rod	304 Stainless steel
Radiator	Aluminium alloy
Range ratio	10:1

4.2 Electrical Data General

Power supply	24 VDC

5 Dimensional Drawing

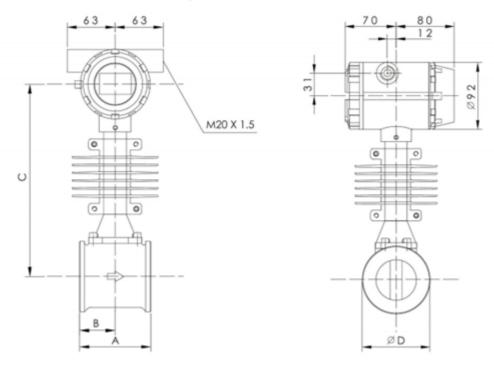


Figure 1 Outline dimensional drawing of Vortex Flow Meter for Steam

DN	Vortex Flow Meter Dimension Rated Pressure 1.6 MPa Unit: mm			
	Α	В	С	ΦD
40	100	50	256	75
50	110	55	256	87
65	110	55	262	109
80	110	55	267	120
100	120	60	271	149
125	133	73	291	175
150	160	90	304	203
200	185	115	331	259
250	210	140	357	312
300	240	165	383	363

6 Installation

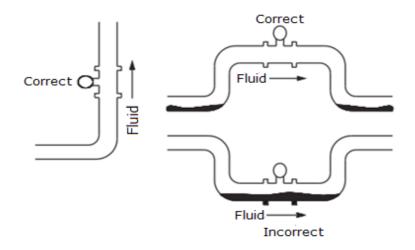
Make sure that all components listed below are included in your package.

Qty	Description	Item No.
1	Vortex Flow Meter for Steam	S695 435X* *X denotes the last digit, which varies with pipe sizes
1	Companion flange with the bolt and gasket included	NA
1	Calibration certificate	NA
1	Instruction manual	NA

6.1 Installation Requirements

Ensure the following when installing the flow meter:

- The flow direction should match the arrow direction on the flow meter.
- The flange bolts have been fastened to the max torque rating.
- Mechanical stress (twist and bent) should not exist when installation. Mating flanges should keep axial symmetrical and parallel, and proper gaskets should be used.
- Gaskets should not be extended to the flow area, otherwise whirlpool generated and affecting accuracy of the flow meter.
- Any force and moment from the pipe should not affect the flow meter.
- The display of the flow meter should face the users.
- Protecting plug of the cable entries are only allowed to be removed when wiring.
- Remotely installed sensors should be mounted on places that is almost vibration-free.
- Converter of the flow meter should be free from direct sunshine.
 (Shade is required)


Observe the following rules when choosing the installation places:

- No negative pressure in measuring tube.
- · Avoid being installed near motor, transformer, and other strong

current equipment, to avoid jammer.

- Avoid being installed near strong corrosion gas.
- Avoid being installed in separated place, when measuring mixed fluid.
- Avoid being under direct sunlight, ambient temperature should be -25°C ... +65°C.
- Choose places without or with less vibration. If too much vibration, install fixed support before and after the pipe.
- Relative humidity is 5% ... 90%.
- Avoid direct rain and soaked places.
- Prevent liquid retention.
- The flow meter should be mounted on a vertical pipe to prevent accumulation of fluid.
- When the flow meter is installed horizontally, raise the pipe section installed with the flow meter.

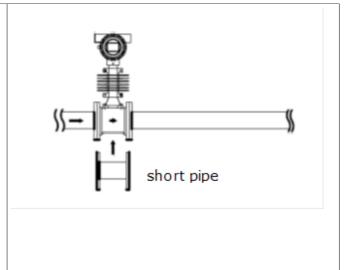
6.2 Installation Instructions

6.2.1 Error between the Inner Diameters of Pipes

- The inner diameter of the pipe should be as close as possible to the inner diameter of the meter, and there should be no obvious deviation.
- Ensure that the inner wall of the pipe on both sides of the flow meter is smooth and free of surfacing.

6.2.2 Straight Pipe Requirements

Description	Illustration	
1. Flow condition at the entrance shouldn't be interfered ≥ 10D		
2. Behind the valve ≥ 35D		
3. Reducing pipe ≥ 15D	3	
4. One 90° bent pipe ≥ 20D		
5. Two 90° bent pipes on one flat surface ≥ 30D	5	



6 Two 00° bent pines on different	
6. Two 90° bent pipes on different flat surfaces ≥40 DN	
1. Downstream Straight Pipe ≥ 5D	
2. Measuring point away from vortex flow meter ≥ (4-6)D	
3. Advice: The meter is installed upstream of the valve	5DN
4. Not advice: the meter is mounted directly behind the valve	
5. Maximum height of insulation layer	<u>\$</u>

Cleaning the pipeline:

- For newly installed or repaired pipes, flush out rust, scale, residue and sludge from the pipes before operation.
- When flushing, water flows through the bypass line to avoid damage to the flow meter.
- If there is no bypass, temporarily install a short pipe to replace the flow meter.

6.2.3 Wafer Type of Vortex Flow Meter Installation

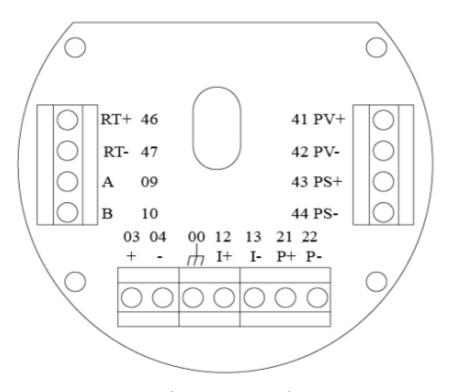
Wafer **Description** Positioning and installation of the wafer type Note: The inner diameter of the flow meter gasket must be larger than the inner diameter of the pipe so that it does not interfere with Wafer type the flow inside the tube. vortex flowmeter Graphite gasket When the flow meter is installed vertically in an open position, the wiring Flow Direction port should face downwards, otherwise it FM seal flange used Installation studs, will leak rain when it for alignment nuts and gaskets rains.

6.2.4 Flange and Bolt

Companion flange and bolts are used to install vortex flow meters between the two flanges. The following table lists the recommended minimum bolt lengths for wafer type flow meter and flanges of different grades.

Recommended minimum bolt lengths for various flange grades are listed below.

Nominal diameter	PN16	PN25	PN40
DN40	220	220	240
DN50	220	220	240
DN65	220	220	240
DN80	220	220	240
DN100	240	240	270
DN125	240	240	270
DN150	270	270	300
DN200	300	300	350
DN250	350	350	370
DN300	370	370	400


6.3 Electrical Connection

6.3.1 Requirements on Cable

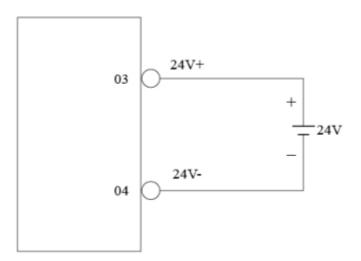
Cable	Illustration
According to requirement of the protection level, we advise that: Cable does not knot at the entrance, Use drip bend (Cable U-bend to avoid water intake).	

6.3.2 Terminal Connection

Terminal connection diagram

The definition of terminals and their marks is given as below:

Terminals	Terminal code	Description
+	03	DC 24 V+
-	-04	DC 24 V-
	00	GND
I+	12	Output Current anode
I-	13	Output Current cathode
P+	21	pulse output
P-	22	pulse common
В	10	RS-485
Α	09	RS-485
RT+	46	Resistance Temperature Detector Signal positive
RT-	47	Resistance Temperature Detector Signal negative
PV+	41	Pressure sensors Power supply positive pole
PV-	42	Pressure sensors power supply negative pole


Terminals	Terminal code	Description
PS+	43	Pressure sensors Signal positive
PS-	44	Pressure sensors Signal negative

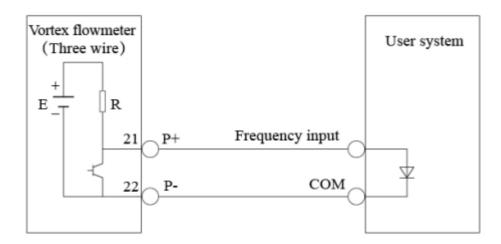
Notes:

- The frequency output is active output.
- The thermal resistance is two-wire; the pressure equipment supports: pressure transmitter and pressure sensor.

6.4 Power Supply Connection

The vortex flow meter can use DC power supply 18 ... 30 VDC. Three-wire Vortex flow meter (with compensation) 24 VDC power supply wiring is as following.

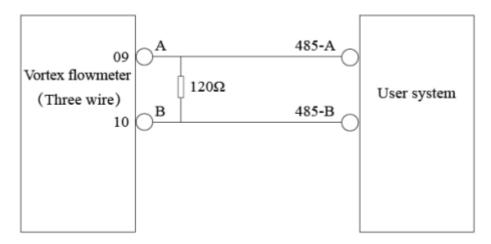
6.5 Frequency Output


The upper limit of the frequency output range is adjustable from 0...5000 Hz, and the frequency output corresponds to the flow percentage. User can choose 0...5000 Hz, also can select a lower frequency, for example 0...1000 Hz or 0...2000 Hz, etc.

POUT are transistor open collector output.

Frequency output

The frequency output is active digital output direct connection.



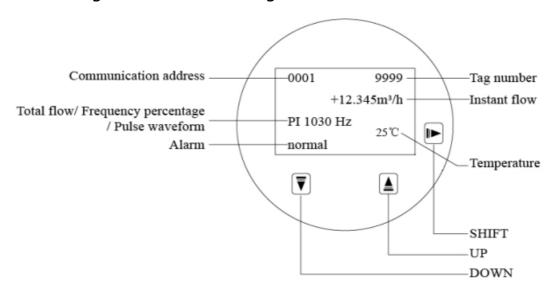
Parallel connection method digital output connection

6.6 RS-485 Communication

The three-wire vortex flow meter adopts RS-485 communication mode. In order to eliminate signal reflections in the communication cable, Parallel 120Ω termination resistor to the flow meter terminal A, B line at the end of the RS-485 which is close to the flow meter.

The wiring can refer to the following:

RS485 Communication wiring



7 Parameter Setting

7.1 Keypad and Display

Display interface: Enter the display interface when powered.

Setup menu: Press SHIFT key on the display interface, the converter will display a login page and password is required. Input proper password, and the system enters into the setup mode. There are three keys on the keypad. They can be used to enter the parameter setting mode and change the meter's configuration.

Single button function:

Shift: Under the setting parameter menu, this button is used as a combination button. Press this button when entering a number to select the set digit, Shift right in the screen of number.

Up: In parameter setting status, press this key, screen can display the upper content circularly, and press this key can increase the numbers.

Down: In parameter setting status, press this key, screen can display the next content circularly, and press this key can decrease the numbers.

Combination button function:

Press simultaneously

Press simultaneously

ESC

On the main display interface, Press Trepeatedly, the third line can show the following content: Total flow, signal frequency, output frequency, flow percentage, pulse waveform.

ВТ	0	Displays Bluetooth information.			
Т	00000 m ³	Displays the total flow rate.			
FP	0.0 %	Displays the percentage of instaneous flow rate.			
РО	00000 Hz	Displays the output frequency.			
PI	00000 Hz	Displays the sensor signal frequency.			

Press Key Operation Instructions

- 1. After power on, press "ENTER", the screen will show parameter setting password (000000).
- 2. Enter into the password code.
- 3. Press "ENTER", it will enter into the main menu interface;
- 4. Press "UP" or "DOWN", choose the menu that need to setup, press "ENTER", and press "UP" or "DOWN", choose the required parameter values, press "ENTER" to exit the menu.
- 5. Press "UP" or "DOWN", choose the next menu that need to setup. After the setup, press "ENTER" for three seconds to exit the parameter setting. And press "SHIFT+UP", return to the previous menus.

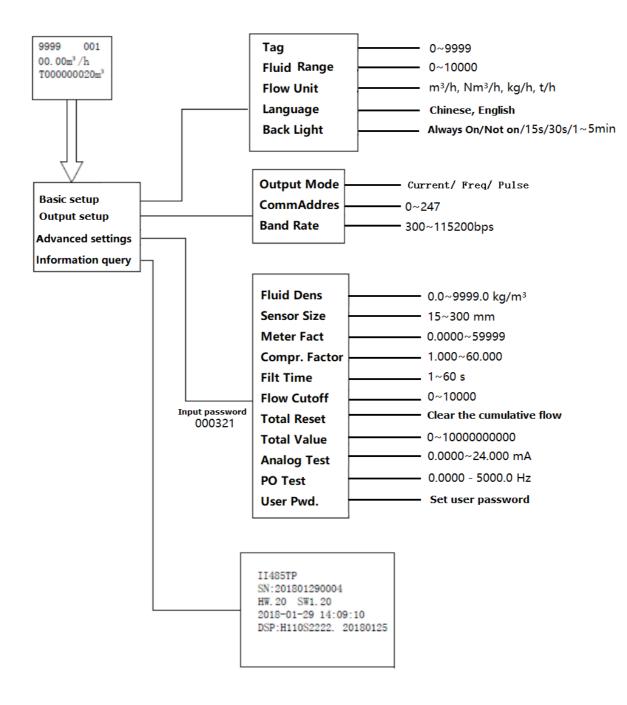
7.2 Parameter Setting Function and Operation

The password of the instrument designed is as follows: three levels of passwords for users. They are the basic password, the advanced password, and the total flow clear password. In the main interface, press "Enter" to enter the password setting interface. Enter a different password to get the appropriate permissions to set different parameters. Basic password: 000321. If you need other passwords, contact the manufacturer's technicians.

Basic password (level 1): basic parameters, output parameters, advanced settings, information query.

Total flow clear password: Clear the total flow to zero.

Note: After the parameters setting, the flow meter should be powered on again to ensure the meter works normally.


7.3 Operation Menu

Menu	Setting	Description		
	Tag	0 ~ 9999		
	Fluid range	0 ~ 10000		
Basic setup (No password)	Flow Unit	m³/h, Nm³/h, kg/h, t/h		
(No password)	Language	Chinese, English		
	Back Light	Always on/not on/15s/30s/1 ~ 5min		
	Output Mode	Current/ Freq/ Pulse		
Output setup (No password)	CommAddres	0 ~ 247 (RS-485 Communication) 0 ~ 15 (HART Communication)		
	Band Rate	1200 ~ 115200 bps		
Advanced settings	Fluid Dens.	0.0 ~ 9999.0 kg/m³		
(Password: 000321)	Sensor Size	15 ~ 300mm		
	Meter Fact	0.0000 ~ 59999		
	Compr. Factor	1.000 ~ 60.000 Note : This parameter is not displayed when applied to liquids or using temperature and pressure compensation.		
	Filt Time	1 ~ 60s		
	Flow Cutoff	0 ~ 10000		
	Total Reset	Clear the cumulative flow		
	Total Value	0 ~ 1000000000		
	Analog Test	0.0000 ~ 24.000 mA		
	PO Test	0.0000 ~ 5000.0 Hz		

Menu Setting		Description		
	User Pwd.	Set user password		
Information query (No password)	N/A	Display the sensor information		

7.4 Quick Setup Menu List

7.5 Parameter Settings Instruction

7.5.1 Nominal Size

The flow meter is available in 9 sizes, that's 50 mm, 65 mm, 80 mm, 100 mm, 125 mm, 150 mm, 200 mm, 250 mm, 300 mm. The diameter of the flow meter after delivery of the factory is fixed, and it is not recommended to modify it at will.

7.5.2 Flow Unit

The flow unit is divided into four types: m³/h, Nm³/h, kg/h, and t/h. M³/h and Nm³/h are volumetric flows; kg/h and t/h are mass flow rates. The instantaneous flow unit and the cumulative flow unit are the same.

7.5.3 LowFlow Cutoff

Cut off the flow according to the flow range, and the unit is the same as flow unit. When the flow rate is lower than the small flow cutoff value, the flow rate can stably indicate zero.

7.5.4 Flow Range

To make the current output correspond to flow range, you need to set the upper limit of the flow range, then the whole flow range is determined and corresponding to 4 ... 20 mA.

7.5.5 Language

Two languages are available: Chinese and English.

7.5.6 Output Mode

There are 5 output modes: Current, frequency, pulse, current+ frequency, and current + pulse. The pulse is a direct pulse, and the current and frequency are output as a percentage.

7.5.7 Output Freq.

Output frequency setting, that is, the output frequency upper limit setting; the output frequency lower limit defaults to 0, no setting is required; The output frequency setting range is $(0 \sim 5000)$ Hz (can be set). The frequency output corresponds to the percentage of flow.

7.5.8 CommAddress

When communication with HART, the address should be changed into non-zero and the address range is $01 \sim 247$.

When communication with RS-485, the address should be changed into non-zero and the address range is $01 \sim 247$.

7.5.9 Band Rate

There are 8 band rates for customer to choose, that is 1200, 2400, 4800, 9600, 19200, 38400, 57600, and 115200 bps.

This parameter is valid only for RS-485 communication.

7.5.10 CompensMode

This flow meter has 13 types of temperature and pressure compensation methods:

- 1. Density No compensation
- 2. Gas_MTMP Gas Measure Temperature and Measure Pressure.
- 3. Gas MTSP Gas Measure Temperature and Set Pressure.
- 4. Gas_STMP Gas Set Temperature and Measure Pressure.
- 5. Gas_STSP Gas Set Temperature and Set Pressure.
- 6. Satur_MT Saturated Steam Measure Temperature
- 7. Satur_ST Saturated Steam Set Temperature
- 8. Satur_MP Saturated Steam Measure Pressure
- 9. Satur_SP Saturated Steam Set Pressure
- 10. Super_MTMP Superheated Steam Measure Temperature and Measure Pressure.
- 11. Super_MTSP Superheated Steam Measure Temperature and Set Pressure.
- 12. Super_STMP Superheated Steam Set Temperature and Measure Pressure.
- 13. Super_STSP Superheated Steam Set Temperature and Set Pressure.

24 \$435

7.5.11 CompSetTemp

Compensation with Set the value of Temperature. This parameter is to set the temperature, and the unit is °C.

7.5.12 CompSetPress

Compensation with Set the value of Pressure. This parameter is to set the pressure, and the unit is kPa.

7.5.13 RTD Sel

This parameter is set when the flow meter with temperature and pressure compensation function. Select the type of thermal resistance of the temperature measurement channel, Two types are available: PT100 and PT1000.

7.5.14 PressMax

The upper range of the pressure transmitter or pressure sensor (the lower limit defaults to 0).

7.5.15 VoltageMin/ VoltageMax/ Sensor Type

Sensor type has the following types: Gauge pressure sensor, absolute pressure sensor, gauge pressure transmitter, and absolute pressure transmitter.

Pressure chooses the four-wire pressure sensor.

Pressure sensor requirements: 5 V active power supply, the lower pressure source is set to 0, and the upper pressure source is set to 100.

7.5.16 AtmSet

The factory default is 101.325 kPa. For actual values, please refer to the local actual atmospheric pressure setting.

7.5.17 Press Unit

The factory default is Pa, and can choose Pa, kPa, MPa.

7.5.18 Press Cut Off

Cut off according to the percentage of pressure. And steady indication

zero when the pressure is lower than the set value.

7.6 Instrument On-site Debugging

If the instrument is calibrated according to the actual site conditions, only one parameter of the "Noise Cutoff" needs to be adjusted on site. Usually the on-site noise is larger than the calibration, so the "Noise Cutoff" can be adjusted to a larger degree to remove the interference noise. Note: adjust the "Noise Cutoff" to a larger degree will sacrifice the lower limit of the flow measurement.

"LowFlow Cutoff" can achieve no flow metering when the flow is very small. Need to cut off small flow according to the actual situation on site. The factory default is 0, that is, it is not cutoff.

7.7 Total Reset

Press the "ENTER" button on the main screen to enter the total clear password. Enter the parameter interface and select "Total Clear". Press the "ENTER", and the total flow is cleared.

7.8 Communication Mode Selection

The vortex converter has two modes of communication: Hart communication and RS485 communication. The model of the flow meter determines the communication mode. Select a flow meter with the communication function, otherwise it will be invalid.

7.9 Temperature and Pressure Compensation Function

The compressibility of the gas determines that its flow measurement is more complex than liquid. Flow is related to the input signal and also related to gas density. The density of the gas is a function of temperature and pressure. Therefore, the measurement of gas generally needs temperature and pressure compensation. Fluid density varies with temperature and pressure, the "fluid density" parameter sets the density under standard conditions. And in order to get the density under working conditions, then temperature and pressure compensation is needed. It realizes the conversion of volume flow and mass flow under standard conditions and working conditions. In addition, the calculation of the working condition flow with compensation is realized.

The source of pressure and temperature for compensation can be

selected by the "CompensMode" parameter. When compensation by set the values, the parameters of temperature and pressure comes from working conditions. When compensation by measure, the value of temperature and pressure comes from real-time acquisition.

Under compensation, Pressure unit kPa, temperature unit °C.

The theoretical basis for the temperature and pressure compensation of the gas is carried out by the ideal gas equation. However, the relationship between temperature, pressure and volume deviates from the ideal gas equation under non-standard working conditions. Using a gas compression factor can compensate this deviation.

Compensation for saturated steam: Because the temperature and pressure of saturated steam correspond one-to-one, the compensation of saturated steam only needs to know one value of the temperature or pressure to compensate.

Superheated steam: Both temperature and pressure are required to compensate.

Notes:

- This parameter is for gas, superheated steam and saturated steam. Therefore, it is compensated when the medium is measured as gas. This is, the "Fluid Type" parameter is set to Gas.
- Fow meter series with the temperature and pressure compensation function must be selected if the compensation function is required.

8 Troubleshooting

Symptom	Check	Corrective Action
Communication problems with HART-based Communicator	 Check for a minimum of 24 V at transmitter terminals. Check communications loop with HART-based communicator. Check for loop resistor (≥ 250 ohms). 	 Remove pulse connection if you have a three wire pulse installation. Replace electronics.
Incorrect 4–20 mA Output	 Check 24 V power supply at transmitter terminals Check range setting and modify the configuration Check output mode and modify the configuration Disconnect current output loop and test if there is any additional voltage. 	 Disconnect current output loop, test whether the output current is correct by multimeter; Check for corrosion on terminal block. Replace electronics if necessary.
Incorrect Pulse Output	 Check the range setting and modify the configuration. Check output mode setting and modify the configuration. 	Replace electronics if necessary.
Flow in Pipe, No Output	 Basics Check to make sure that the meter is installed with the arrow in the direction of process flow. Perform basic checks for incorrect 4–20 mA Output Problem (see incorrect 4–20 mA Output). Check and modify the configuration as following: Check size and flow range within the measurable flow range. Check output frequency 	 Application Problems Check that application meets viscosity and specific gravity requirements for the line size. Recalculate back pressure requirement. If necessary and possible, increase back pressure, flow rate, or operating Pressure. Sensor Inspect coaxial sensor cable for cracks.

9 Disposal or Waste

Electronic devices are recyclable material and do not belong in the household waste.

The sensor, the accessories and its packings must be disposed according to your local statutory requirements. The dispose can also be carried by the manufacturer of the product, for this please contact the manufacturer.

10 Appendix A: Flow Measurement Range

Saturated Steam Mass Flow Rate

DN		Saturated Steam Mass Flow Rate (t/h)										
(mm)	0.1	MPa	0.2	MPa	0.3	MPa	0.4	MPa	0.5	MPa	0.6	MPa
DN50	0.04	0.35	0.04	0.52	0.05	0.68	0.06	0.83	0.06	0.99	0.07	1.14
DN65	0.06	0.6	0.08	0.87	0.09	1.14	0.1	1.41	0.11	1.67	0.11	1.93
DN80	0.1	0.9	0.12	1.32	0.13	1.73	0.15	2.13	0.16	2.53	0.17	2.93
DN100	0.15	1.41	0.18	2.06	0.21	2.7	0.23	3.33	0.25	3.96	0.27	4.58
DN125	0.23	2.2	0.28	3.22	0.32	4.22	0.36	5.21	0.39	6.18	0.42	7.15
DN150	0.33	3.17	0.4	4.64	0.46	6.08	0.51	7.5	0.56	8.9	0.6	10.3
DN200	0.6	5.64	0.72	8.25	0.82	10.8	0.91	13.33	1	15.83	1.07	18.31
DN250	0.93	8.81	1.12	12.88	1.29	16.88	1.43	20.82	1.56	24.73	1.68	28.61
DN300	1.34	12.69	1.62	18.55	1.85	24.31	2.06	29.99	2.24	35.61	2.41	41.2

Saturated Steam Mass Flow Rate (Continued 1)

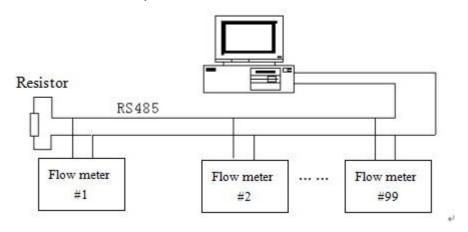
DN		Saturated Steam Mass Flow Rate (t/h)								
(mm)	0.7	MPa	0.8	.8 MPa 0.9 MPa		1.0 MPa		1.1 MPa		
DN50	0.07	1.29	0.08	1.45	0.08	1.61	0.08	1.76	0.09	1.91
DN65	0.12	2.18	0.13	2.45	0.13	2.71	0.14	2.97	0.15	3.23
DN80	0.18	3.3	0.19	3.72	0.2	4.11	0.21	4.5	0.22	4.89
DN100	0.28	5.16	0.3	5.81	0.32	6.42	0.33	7	0.35	7.65
DN125	0.44	8.06	0.47	9.08	0.5	10.04	0.52	11	0.54	11.95
DN150	0.64	11.61	0.68	13.07	0.71	14.45	0.75	15.83	0.78	17.21
DN200	1.14	20.64	1.21	23.24	1.27	25.69	1.33	28.14	1.39	30.6
DN250	1.78	32.25	1.89	36.31	1.98	40.15	2.1	44	2.2	47.8
DN300	2.56	46.45	2.72	52.28	2.86	57.81	3	63.3	3.12	68.8

Saturated Steam Mass Flow Rate (Continued 2)

DN		Saturated Steam Mass Flow Rate (t/h)								
(mm)	1.2	MPa	1.3	MPa	1.4	MPa	1.5	MPa	1.6	MPa
DN50	0.09	2.06	0.09	2.22	0.1	2.37	0.1	2.52	0.1	2.67
DN65	0.15	3.49	0.16	3.75	0.16	4	0.17	4.26	0.17	4.52
DN80	0.23	5.28	0.24	5.68	0.25	6.07	0.25	6.45	0.26	6.84
DN100	0.36	8.26	0.37	8.87	0.39	9.48	0.4	10.08	0.41	10.69
DN125	0.56	12.9	0.58	13.86	0.6	14.81	0.62	15.76	0.64	16.71
DN150	0.81	18.58	0.84	19.95	0.87	21.32	0.9	22.69	0.92	24.06
DN200	1.44	33.03	1.49	35.48	1.54	37.91	1.59	40.34	1.64	42.78
DN250	2.25	51.61	2.33	55.43	2.41	59.23	2.49	63.03	2.56	66.84
DN300	3.24	74.31	3.36	79.82	3.47	85.29	3.58	90.76	3.69	96.25

11 Appendix B: Modbus Communications

11.1 Introduction


S435 provides the standard Modbus communication interface. Its baud rates can be 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, or 115200. Through the Modbus communication network, hosts can collect instantaneous flow, accumulative flow, and so on.

The serial port parameters that S435 uses: 1 start bit, 8 data bits, 1 stop bit, none parity bit.

S435 Modbus communication port is electrically isolated in the physical structure. The isolation voltage is 1500 V with ESD protection, avoiding various interferences from industrial scene and ensuring the reliability of communication network.

11.2 Modbus Networking and Wiring

The standard Modbus communication network is a bus network, which can support 1 to 99 flow meters. The flow meter at the farthest end of the network usually requires to connect a 120-ohm terminal matching termination resistor in parallel. The standard communication connection media is shielded twisted pair.

Networking diagram

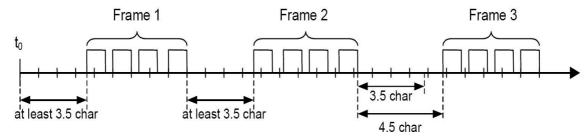
11.3 Modbus Messages in RTU Framing

S435 uses the Modbus/RTU framing format (hexadecimal format). Its frame format is shown in section 11.3.1.

11.3.1 Master Order Frame Structure

Master RTU message frame

Start			Register address	_	CRC	Stop
T1-T2-T3-T4	8Bits	8Bits	16Bits	16Bits	16Bits	T1-T2-T3-T4


11.3.2 Slave response frame structure

Slave RTU message frame

Start	Device address	Function code	Data	CRC	Stop
T1-T2-T3-T4	8Bits	8Bits	n 8Bits	16Bits	T1-T2-T3-T4

Notes:

• T1-T2-T3-T4 is the start or stop frame. The Modbus protocol defines that every two frames must have at least a 3.5-char delay. See below figure for reference.

Modbus frame interval

- Device address: This is S435's communication address. Two identical addresses are not allowed in a network.
- Function code: Defined by the Modbus protocol. S435 uses the function code 03, which realizes the data collection using the read holding register.
- Register address and the number of registers: The master reads data from the consecutive N registers that starts from the "Register address". N is defined in the "Register length".
- Slave response data: The number of bytes and N bytes. See more details in the Modbus protocol.

11.4 Function Codes

Modbus function codes are listed in below table. S435 only uses 03 code.

Function code	Name	Function	
01	Read coil status	reservation	
02	Read input status	reservation	
03	Read holding registers	read S435 real-time information	
04	Read input register	reservation	
05	Strong set single coil	reservation	
06	Preset single register	reservation	
15 Strong multi-coil set		reservation	
16	Input multiple register	reservation	

11.5 Definition of addresses

Modbus addresses is defined as follows:

Data type	Starting address
Coils (output)	00001
Digital Inputs	10001
Analog Inputs	30001
Holding Registers	40001

S435 only uses Holding Registers.

11.6 Modbus Registers

11.6.1 S435 Data Type

Basic data type	Data width (Bit)	Description	Range
BOOL	1	BOOL	0 ~ 1
BYTE	8	BYTE	16#00 ~ 16#FF
WORD	16	WORD	16#0000 ~ 16#FFFF
DWORD	32	Double word	16#00000000 ~ 16#FFFFFFF

Basic data type	Data width (Bit)	Description	Range
SINT	8	Singer integer	-128 ~ 127
INT	16	Integer	-32768 ~ 32767
DINT	32	Double integer	-2147483648 ~ 2147483647
USINT	8	Unsigned singer integer	0 ~ 255
UINT	16	unsigned integer	0 ~ 65535
REAL	32	Real number	
UDINT	32	Unsigned Double integer	0 ~ 4294967295

11.6.2 Modbus Register Addresses

No.	Modbus Address (Decimal)	Protocol address (Physical Address) (Decimal)	Data format	Resister definition	Unit	Note
1	40151	150	REAL	Instantane ous flow	Refer to "Instantane ous flow unit"register	P&T compensati on series product. This value is after compensati on.
2	40153	152	DWORD	Instantane ous flow unit\	blank	NA
3	40155	154	DWORD	Integer part of the cumulative value	Refer to "Instantane ous flow unit"register	P&T compensati on series product, This value is after compensati on.
4	40157	156	REAL	Decimal part of the cumulative	Refer to"Cumulati ve flow	P&T compensati on series

No.	Modbus Address (Decimal)	Protocol address (Physical Address) (Decimal)	Data format	Resister definition	Unit	Note
				value	unit"register	product, This value is after compensati on.
5	40159	158	DWORD	Cumulative total units	blank	NA
6	40161	160	REAL	Temperatur e value	°C	Only valid for P&T compensati on series product
7	40163	162	REAL	Pressure value	Refer to"Pressure unit"register	Only valid for P&T compensati on series product
8	40165	164	DWORD	Pressure unit	blank	NA
9	40167	166	REAL	Working condition density	kg/m³	P&T compensati on series product. This value is after compensati on.
10	40169	168	REAL	Flow percentage	%	Instantane ous flow/range *100
11	40055	54	REAL	K-factor	L/P	NA

Notes:

- Modbus Address: Refers to the Modbus standard address. The first two digits "40" indicate the Modbus holding registers. The last three digits indicate the address of the holding register. With the address starting at 1; address 40100 represents the 100th holding register.
- Protocol address: Refers to the address that is transmitted in the Modbus-protocol messages. The address starts at 0, therefore the protocol address of the 100th holding register is 099.
- The relationship of "Modbus address" and "protocol address":

"Modbus address", starts at 1; Because the function code already specifies the type of address variable represented by the address. In fact, the first two bits of the "Modbus address" are transmitted in the messages. So only the last 3 bits are valid.

"Protocol address" is the address obtained by subtracting "1" from the "Modbus address" that is removed the first two bits. The "Protocol address" is the address that is used in the protocol transmission. Because the "protocol address" starts from 0, and the "Modbus address" starts from 1, so subtracting "1" is needed.

When the communication starts, by subtracting 1 from the last 3 digits of the "Modbus Address", you can get the "protocol address". "Protocol address" is the address used in the communication. Many of software products installed on the master stations use "Modbus address", so the user interface of the PLC and other master devices uses the "Modbus address". However, in the transmission protocol, only the "Protocol address" converted from the "Modbus address" participates in the underlying communication.

11.6.3 Description of Data

Unit code definition:

Instantaneous flow unit		Cumu	lative flow unit	Cumulative flow unit		
Code	Instantaneous flow unit	Code	Code Cumulative flow unit		Pressure unit	
0	m³/h	0	m³	0	Pa	
1	Nm³/h	1	Nm³	1	kPa	
2	kg/h	2	kg	2	MPa	
3	t/h	3	t			

11.7 Communication Data Analysis

Instantaneous flow, flow percentage, and the decimal part of the cumulative positive value are transmitted in the floating point numbers. The integer part of the cumulative positive value is transmitted as a long integer.

11.7.1 Read Instantaneous Flow

Master sends command (hexadecimal number)

01	03	00	96	00	02	24	27
Device address	Function code	high	low	Register high length	Register low length	CRC low	CRC high

Data that master receives from Slave (hexadecimal number)

01	03	04	C4	1C	60	00	2E	C5
Device	Function	Data	4 bytes float				CRC	CRC
address	code	length	(instantaneous flow)				low	high

Float:

S=1: if mantissa symbol is 1, it is a negative.

E=10001000: Exponent is 136

M=001 1100 0110 0000 0000 0000, The mantissa is:

$$V = (-1)^{1} 2^{(136 - 127)} (1 + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{512} + \frac{1}{1024})$$

= -625.5

Note:

Floating-point format:

S435 Modbus uses IEEE754, 32-bit floating-point format. Its structure is shown as follows: (Take the instantaneous flow as an example.)

0X1010	(34113)	0x1011	(34114)		
BYTE 1	BYTE2	BYTE3 BYTE4			
S EEEEEEE	Е МММММММ	МММММММ	МММММММ		

S- Mantissa symbol; 1=negative, 0=positive.

E- Exponent; expressed by the difference with decimal number 127.

M- Mantissa; low 23 bits and the decimal part.

When not all of the E is "0" and "1", the conversion formula between floating-point and the decimal number is:

$$V = (-1)^{S} 2^{(E-127)} (1 + M)$$

11.7.2 Read Cumulative Flow

To express the cumulative value of S435 in full, the integer part and decimal part of the cumulative flow are expressed respectively. The integer part uses the long variable and the decimal part uses floating-point number.

Suppose that the cumulative flow is 28785.5m³, it includes 2 parts: Integer value of 28785 and Decimal value of 0.5.

Integer value of the cumulative flow is 28785 m³.

Master sends a command to collect the integer value of cumulative flow from the slave (hexadecimal number)

01	03	00	9A	00	02	E4	24
Device address	Function code	First Register address (high)	First Register address (low)	Registers	Number of Registers requested (low)	CRC low	CRC high

Data that the master receives from the slave:

01	03	04	00	00	70	71	1F	D7
Device address	Function code		4 bytes (integer	J 1		ve flow)	CRC low	CRC high

Decimal value of cumulative flow is 0.5m³.

Master sends a command to collect the decimal value of cumulative flow from the slave (hexadecimal number)

01	03	00	9C	00	02	04	25
Slave address	Function code	First Register address (high)	First Register address (low)	Number of Registers requested (high)	Number of Registers requested (low)	CRC low	CRC high

Data that the master receives from the slave:

01	03	04	3F	00	00	00	F6	01
Slave address	Function code	Number of data bytes	,		•		CRC (low)	CRC (high)

Floating-point number:

3F 00 00 00

0011 1111 0000 0000 0000 0000 0000 0000

S=0

E= 0111111 126

M= 000 0000 0000 0000 0000 0000

$$V = (-1)^{1} 2^{(126 - 127)}$$

$$= 0.5$$

SUTO iTEC GmbH

Grißheimer Weg 21 D-79423 Heitersheim Germany

Tel: +49 (0) 7634 50488 00 Email: <u>sales@suto-itec.com</u>

Website: www.suto-itec.com

SUTO iTEC Inc.

5460 33rd St SE Grand Rapids, MI 49512 USA

Tel: +1 (616) 800-7886

Email: sales.us@suto-itec.com
Website: www.suto-itec.com

All rights reserved ©

SUTO iTEC (ASIA) Co., Ltd.

Room 10, 6/F, Block B, Cambridge Plaza 188 San Wan Road, Sheung Shui, N.T. Hong Kong

Tel: +852 2328 9782

Email: sales.asia@suto-itec.com
Website: www.suto-itec.com

Modifications and errors reserved S435_im_en_2023-1